The role of well-defined patterned substrata on the regeneration of DRG neuron pathfinding and integrin expression dynamics using chondroitin sulfate proteoglycans.

نویسندگان

  • Gerald N Hodgkinson
  • Patrick A Tresco
  • Vladimir Hlady
چکیده

Injured neurons intrinsically adapt to and partially overcome inhibitory proteoglycan expression in the central nervous system by upregulating integrin expression. It remains unclear however, to what extent varying proteoglycan concentrations influence the strength of this response, how rapidly neurons adapt to proteoglycans, and how pathfinding dynamics are altered over time as integrin expression is modulated in response to proteoglycan signals. To investigate these quandaries, we created well-defined substrata in which postnatal DRG neuron pathfinding dynamics and growth cone integrin expression were interrogated as a function of proteoglycan substrata density. DRGs responded by upregulating integrin expression in a proteoglycan dose dependent fashion and exhibited robust outgrowth over all proteoglycan densities at initial time frames. However, after prolonged proteoglycan exposure, neurons exhibited decreasing velocities associated with increasing proteoglycan densities, while neurons growing on low proteoglycan levels exhibited robust outgrowth at all time points. Additionally, DRG outgrowth over proteoglycan density step boundaries, and a brief β1 integrin functional block proved that regeneration was integrin dependent and that DRGs exhibit delayed slowing and loss in persistence after even transient encounters with dense proteoglycan boundaries. These findings demonstrate the complexity of proteoglycan regulation on integrin expression and regenerative pathfinding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptation of sensory neurons to hyalectin and decorin proteoglycans.

Proteoglycans are abundantly expressed in the pathways of developing and regenerating neurons, yet the responses of neurons to specific proteoglycans are not well characterized. We have shown previously that one chondroitin sulfate proteoglycan (CSPG), aggrecan, is potently inhibitory to sensory axon extension in short-term assays and that over time, embryonic neurons adapt to aggrecan-mediated...

متن کامل

Full length talin stimulates integrin activation and axon regeneration

Integrin function is regulated by activation involving conformational changes that modulate ligand-binding affinity and downstream signaling. Activation is regulated through inside-out signaling which is controlled by many signaling pathways via a final common pathway through kindlin and talin, which bind to the intracellular tail of beta integrins. Previous studies have shown that the axon gro...

متن کامل

Effect of Chondroitinase ABC Enzyme on Glial Fibrillary Acidic Protein, Chondroitin Sulfated Proteoglycans and Chondroitin 4-Sulfate Levels in an Animal Model of Spinal Cord Injury

Background: Following spinal cord injury, reactive astrocytes upregulate chondroitin sulfate proteoglycans (CSPGs) which act as a barrier to neuronal repair and regeneration. Therefore, enzymatic digestion of CSPGs by chondroitinase ABC (cABC) is a key strategy in the treatment of spinal cord injury. Furthermore, cABC has been shown to attenuate post spinal cord injury inflamma...

متن کامل

Neurotrophins support regenerative axon assembly over CSPGs by an ECM-integrin-independent mechanism.

Chondroitin sulfate proteoglycans (CSPGs) and myelin-based inhibitors are the most studied inhibitory molecules in the adult central nervous system. Unlike myelin-based inhibitors, few studies have reported ways to overcome the inhibitory effect of CSPGs. Here, by using regenerating adult dorsal root ganglion (DRG) neurons, we show that chondroitin sulfate proteoglycans inhibit axon assembly by...

متن کامل

Evaluating Chondroitin Sulfate and Dermatan Sulfate Expression in Glial Scar to Determine Appropriate Intervention Time in Rats

Introduction: The proteoglycans of the extracellular matrix increases in the glial scar during spinal cord injury and significantly affects the inhibition of axonal regeneration.  Methods: The results of injury therapies are limited due to the lack of identifying a timely therapeutic intervention. The present study aimed to investigate the glial scar Chondroitin Sulfate (CS) and Dermatan Sulfa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 33 17  شماره 

صفحات  -

تاریخ انتشار 2012